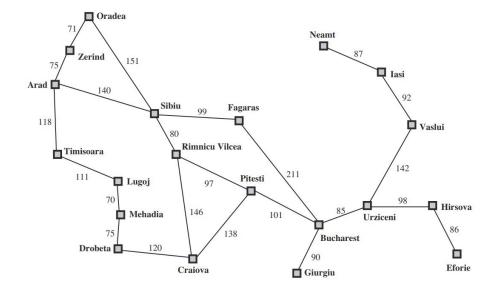
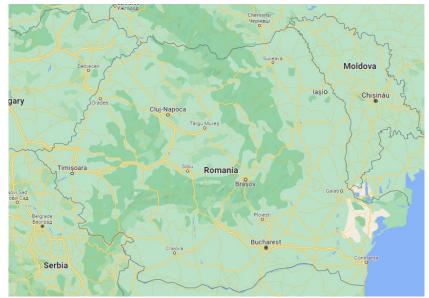
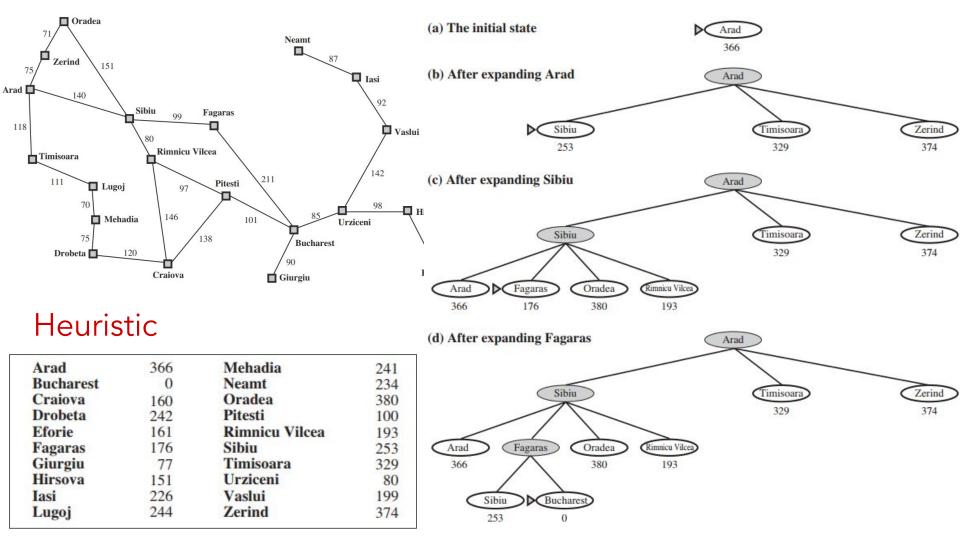
Introduction to Artificial Intelligence


Jan - May 2023 IIT Guwahati


Instructors: Neeraj Sharma (& Arghyadip Roy)


Lecture 08: Neeraj Sharma

DA 221

Informed (Heuristic) Search Strategies

Informed (Heuristic) Search Strategies

- Greedy best-first search
- A* search

Heuristic

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

- Problem: observable, deterministic, known environments
- Solution: sequence of actions

- Problem: observable, deterministic, known environments
- Solution: sequence of actions

What happens when these requirements/assumptions are relaxed?

- Problem: observable, deterministic, known environments
- Solution: sequence of actions

What happens when these requirements/assumptions are relaxed?

Local Search: evaluating (and modifying) current state only; no systematic exploration of paths

Local Search: evaluating (and modifying) current state

only; no systematic exploration of paths

- Path to goal is irrelevant
- 8 queens problem, integrated circuit design, job-shop scheduling, and many more.

Local Search: evaluating (and modifying) current state

only; no systematic exploration of paths

- Path to goal is irrelevant
- Operate using a single current node (rather than multiple paths)
- Move only to a "neighbor" node

Local Search: evaluating (and modifying) current state

only; no systematic exploration of paths

- Path to goal is irrelevant
- Operate using a single current node (rather than multiple paths)
- Move only to a "neighbor" node
- Use little memory a constant amount
- Reasonable solution in finite time

Local Search: evaluating (and modifying) current state

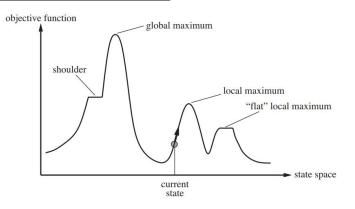
only; no systematic exploration of paths

- Path to goal is irrelevant
- Operate using a single current node (rather than multiple paths)
- Move only to a "neighbor" node
- Use little memory a constant amount
- Reasonable solution in finite time

Hill-climbing Search

function HILL-CLIMBING(problem) returns a state that is a local maximum

```
current \leftarrow MAKE-NODE(problem.INITIAL-STATE)
loop do
neighbor \leftarrow a highest-valued successor of current
if neighbor.VALUE \leq current.VALUE then return current.STATE
current \leftarrow neighbor
```


Hill-climbing Search

function HILL-CLIMBING(problem) returns a state that is a local maximum

```
current \leftarrow MAKE-NODE(problem.INITIAL-STATE)
```

loop do

 $neighbor \leftarrow$ a highest-valued successor of currentif neighbor.VALUE \leq current.VALUE then return current.STATE $current \leftarrow neighbor$

Simulated Annealing

```
function SIMULATED-ANNEALING (problem, schedule) returns a solution state
  inputs: problem, a problem
           schedule, a mapping from time to "temperature"
   current \leftarrow MAKE-NODE(problem.INITIAL-STATE)
  for t = 1 to \infty do
      T \leftarrow schedule(t)
      if T = 0 then return current
      next \leftarrow a randomly selected successor of current
      \Delta E \leftarrow next. VALUE - current. VALUE
      if \Delta E > 0 then current \leftarrow next
      else current \leftarrow next only with probability e^{\Delta E/T}
```

Local Beam Search

Genetic Algorithms